提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)
2015年安徽教师招聘中学数学学科考试范围与内容(一)学科专业知识
第一部分 初中 数学知识
1.数与代数
有理数、实数、代数式、整式、分式。方程与不等式。函数。
2.图形与几何
常见平面图形(如三角形、平行四边形、圆等)性质。尺规作图。图形的平移、对称、相似变换。证明与推理。
3.统计与概率
统计图表的制作。平均数、方差、频率、概率等统计量的概念以及意义。用样本估计总体的思想。
4.综合与实践
综合与实践的价值与意义,综合与实践活动的组织方式与评价方式。
第二部分 高中及大学数学相关知识内容
1.集合与常用逻辑用语
(1)子集、交集、并集、补集。
(2)四种命题之间的关系.充分、充要条件的判断。
(3)全称量词与存在量词。逻辑联结词“或”、“且”、“非”的含义。
2.函数
(1)映射。函数及其的基本性质(定义域、值域、单调性、奇偶性、周期性)。
(2)分数指数幂及运算。对数及运算。指数函数、对数函数、幂函数及其图像和性质。反函数。
(3)任意角的三角函数。同角三角函数的基本关系式,诱导公式,两角和与差的正弦、余弦公式,二倍角、半角公式。正弦函数、余弦函数、正切函数的图像及性质。正弦定理、余弦定理。解斜三角形。
(4)基本初等函数的图像与性质及其应用。
3.不等式、数列与极限
(1)不等式的基本性质。不等式的证明、不等式的解法。含绝对值不等式。方程与不等式的同解原理。初等超越方程的解法。
(2)均值不等式、贝努利不等式、柯西不等式。凸函数定理与排序定理。
(3)等差数列、等比数列通项公式,以及前n项和公式。线性递归数列以及通项公式。
(4)极限。数列极限、函数极限。连续函数的概念。
4.算法初步
(1)算法。程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句。算法的基本思想。
5.排列组合与二项式定理
(1)排列、组合、排列数、组合数。
(2)分类计数原理和分步计数原理,常见排列或组合问题的解决方法。
(3)相异元素允许重复的排列与组合、不尽相异元素的排列与组合。抽屉原理。
(4)二项式定理,二项展开式的性质以及应用。
6.向量与复数
(1)平面向量的意义、几何表示以及向量运算的法则。平面向量的加法与减法、实数与向量的积、平面向量的坐标表示、平面向量的数量积、平面两点间的距离。
(2) 空间向量。空间向量的基本定理。空间向量的线性运算及其坐标表示。空间向量的数量积及其坐标表示。直线的方向向量与平面的法向量。向量方法证 明有关直线和平面位置关系。用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算。向量方法在研究几何问题中的应用。
(3)数系扩充。复数的概念。复数的运算。复数的加、减、乘、除运算。
7. 推理与证明
(1)合情推理。演绎推理。
(2)直接证明的两种基本方法—分析法和综合法。间接证明的一种基本方法──反证法。数学归纳法。
8.导数与积分
(1)导数概念的实际背景,导数的几何意义。
(2)基本导数公式。导数的四则运算法则。简单的复合函数的导数。隐函数的导数。
(3)利用导数研究函数的单调性、求函数的单调区间、求函数的极大值、极小值。闭区间上连续函数的最大值、最小值。用导数解决实际问题。微分中值定理。
(4)不定积分的定义、性质。基本积分公式。简单函数的不定积分。
(5)定积分的性质及其几何意义。牛顿一莱布尼茨公式。用定积分求曲线长度、区边梯形面积。
(6)微积分基本定理。微积分的基本思想。
提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)